

PII: S0040-4020(96)00936-2

Ozonides of Mono-, Bi- and Tricyclic Terpenes

Karl Griesbaum,* Michael Hilß and Joachim Bosch

Engler-Bunte-Institut, Bereich Petrochemie, Universität Karlsruhe (TH), D-76128 Karlsruhe

Abstract: Ozonolysis of (+)-limonene (1) afforded a monoozonide 2 by attack of ozone at the internal double bond and two diastereomeric diozonides (3). Ozonolysis of 1 on polyethylene gave diozonides 3, and ozonolysis on silica gel gave an epoxy ozonide 5. Ozonolyses of (-)-β-pinene (15), (+)-sabinene (20) and (+)-aromadendrene (23) gave two diastereomers, each, of the corresponding ozonides 16, 21 and 24, respectively. Ozonolysis of camphene (26) gave a very labile ozonide 27, while ozonolysis of (-)-α-pinene (12) gave no ozonide. Ozonolysis of (+)-limonene (1) in the presence of formadlehyde gave a cross-ozonide (4), derived from ozone cleavage of the internal double bond, and ozonolysis of (-)-β-pinene in the presence of acetaldehyde also gave a cross-ozonide (17). Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

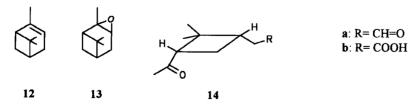
Ozonolyses of terpenes have been studied under a variety of conditions and aspects. Early work was devoted to ozonolysis reactions of terpenes in solution. They were geared at structural elucidations, at the identification of peroxidic ozonolysis products and at the elucidation of the reaction course, particularly in the case of anomalous ozonolysis reactions.¹ In recent years, however, interest in this field has shifted to gas phase reactions in connection with the problems associated with the atmospheric ozone chemistry of such types of terpenes which are emitted from coniferous trees.² In particular, gas phase reactions of ozone with camphene³⁻⁶, limonene^{3,4,7-16}, α-pinene^{3,4,10-14,16,17-20}, β-pinene^{3,4,8,10-15,17,18,20} and sabinene^{3-5,13} have been studied extensively. Major organic reaction products were carbonyl compounds, which are derived from ozone cleavage of the double bonds in the respective terpenes, whereas the formation of ozonides has not been reported. This is in line with the results of gas phase ozonolyses of a series of non-terpenoid olefins, for which ozonides have only been reported in a few cases.²¹ This could have several reasons: Either ozonides are not formed, as it has been postulated based on modified Criegee-mechanisms proposed for gas phase ozone-olefin reactions^{22,23}, or ozonides may not be detected by the analytical methods which are commonly used in gas phase reactions such as long-path FTIR

spectroscopy^{21,24}, in which ozonides show no diagnostic bands, or GC⁶ and MS analysis²³, which may lead to the premature decomposition of ozonides.

Recently, we became interested in this aspect of gas phase ozonolysis of olefins, and in particular of terpenes, and we would like to answer the question of ozonide formation by more reliable analytical methods. As such, 13 C NMR appears to be quite suitable, since ozonides show signals in the range of ca. 100 - 120 ppm for the carbon atoms in the 1 ,2,4-trioxolane rings. Hence, collected samples of products from ozonolyses of terpenes in the gas phase are to be analyzed by 13 C NMR spectroscopy and the presence of ozonides is planned to be verified with the help of authentic samples. To this end, we have now tried to prepare ozonides of the monocyclic terpene limonene (1), the bicyclic terpenes α -pinene (12), β -pinene (15), sabinene (20) and camphene (26), as well as the tricyclic terpene aromadendrene (23).

RESULTS AND DISCUSSION

Treatment of (+)-limonene (1) with one molar equivalent of ozone in pentane at -45 °C afforded ozonide 2, two diastereomers of diozonide 3, denoted 3a and 3b, and ozonide 4, along with intractable peroxidic products, probably oligomeric ozonides. Treatment of 1 with two molar equivalents of ozone in pentane at -45 °C, as well as ozonolysis of 1 on polyethylene at -45 °C, gave the two diastereomers of 3 as the sole monomeric ozonides, along with oligomeric products. Treatment of 1 on silica gel at -38 °C gave four stereoisomers of epoxy-ozonide 5, denoted 5a - 5d, as well as epoxy-ketone 6 and unidentified products. Individual ozonolyses of cis-7 and of trans-7 in pentane at -35 °C, gave in each case two stereoisomeric epoxy-ozonides of structure 5.


Ozonides 2 and 4, as well as all diastereomers of ozonides 3 and 5, have been individually isolated. They are stable at room temperature and their structures have been proven by correct elemental analyses, their ¹H and ¹³C NMR spectra and the formation of the expected products upon their reduction with excess triphenylphosphine (TPP), viz. 6 from 5, 8 from 2 and from 4, and 9 from 3. In addition, reduction of diozonide 3 with only one molar equivalent of TPP gave ozonide 10, which was also isolated, characterized and subsequently reduced with TPP to give 9. The stereochemical identities of 3a, 3b, 5a, 5b, 5c and 5d have not been elucidated.

The fact that there was no monoozonide in which the exocyclic double bond of 1 was selectively ozonized, indicated that, as it had been reported previously^{25,26}, the reaction of ozone with the internal double bond of 1 is preferred. Furthermore, the formation of ozonide 4 in the ozonolysis of 1 suggests that, as expected, the direction of cleavage of the internal double bond of 1 is such, that the more highly substituted of the two possible carbonyl oxides, viz. 11 is formed, and that the latter undergoes

cycloaddition with part of the reactive dipolarophile formaldehyde, which is formed by ozone cleavage of the external double bond of 1. In line with this postulate, ozonolysis of 1 in CH₂Cl₂ and in the presence of added formaldehyde gave ca. 50% of ozonide 4, as opposed to only ca. 7% in the absence of added formaldehyde.

Independent of the technique applied, all ozonolyses of 1 afforded low yields of the corresponding ozonides 2 - 5. This is in line with the experience gained in the ozonolysis of other 1-substituted cyclohexenes: 1-methylcyclohexene gave 5%²⁷ and 1-phenylcyclohexene gave none of the corresponding ozonide²⁸, but rather large proportions of oligomeric ozonides.

Ozonolysis reactions of (-)-α-pinene (12) fell in line with the above trend. Ozonolysis of 12 in pentane at -35 °C gave minor amounts of 13, 14a and 14b and major amounts of a peroxidic precipitate, to the exclusion of the monomeric ozonide of 12. Reduction of the peroxidic precipitate with TPP gave 14a as the major, and 14b as the minor product, thus indicating that the precipitate was an oligomeric ozonide. Ozonolysis of 12 on polyethylene at -78 °C gave a non-peroxidic crude product, which contained 13, 14a and 14b, along with unreacted 12. The lack of formation of an ozonide of 12 is probably due to steric hindrance, caused by the geminal methyl groups.

Ozonolysis of (-)-β-pinene (15) should a priori lead to two diastereomeric ozonides of structure 16. According to two previous reports, however, only one ozonide was obtained from the ozonolysis of 15 in solution. ^{28,29} This was confirmed by our results: ozonolysis of 15 in pentane at -40 °C produced only one ozonide in a yield of 83%. By contrast, ozonolysis of 15 on polyethylene at -40 °C gave two isomeric ozonides denoted 16a and 16b in a combined yield of 70% and in a ratio of 3.2:1. The major ozonide 16a was identical with that obtained in pentane and - on the basis of the published ¹H NMR data^{28,29} - with that obtained previously.

Ozonides 16a and 16b were individually isolated and characterized by correct elemental analyses, their 1 H, 13 C and 17 O NMR spectra and by reduction to give 18. The stereochemical identities of 16a and of 16b have not been elucidated. The neat ozonides 16a and 16b were stable for months when kept at -30 $^{\circ}$ C, whereas they decomposed within 24 hours in CDCl₃ at room temperature and within ca. 30 hours in C_6D_6 at 40 $^{\circ}$ C to give a mixture of 18 and formic acid.

The high yield in which ozonide 16a was formed in pentane suggested that 15 was cleaved to give carbonyl oxide 19, which was effectively trapped by the complementary fragment formaldehyde, a known potent dipolarophile. However, an attempt to prove this by trapping 19 with acetone failed: ozonolysis of 15 in acetone gave 16a in a yield of 92%, yet not the anticipated cross-ozonide. By contrast, ozonolysis of 15 in the better dipolarophile acetaldehyde as solvent provided two stereoisomeric cross-ozonides denoted 17a and 17b and ozonide 16a in a molar ratio of 3:1.3:1. While this mixture could not be separated by chromatographic means, selective reduction of the more reactive ozonide 16a and subsequent chromatographic separation provided a 2.3:1-mixture of ozonides 17a and 17b, which were not individually isolated or stereochemically assigned. Reduction of 17a + 17b with TPP gave 18 and acetaldehyde as expected.

The exclusive formation of ozonide 16a in pentane and in acetone is probably due to steric effects, which the C(CH₃)₂ bridge in carbonyl oxide 19 exerts upon the mode of cycloaddition of 19 with formaldehyde. It is assumed that formaldehyde approaches 19 from the unhindered side, *i.e.* opposite from the C(CH₃)₂ bridge. The fact, that ozonolysis of 15 on polyethylene provided both 16a and 16b may be attributed to the restricted mobility of the fragments 19 and formaldehyde and, hence, to the forced partial addition of formaldehyde from the hindered side of 19.

In contrast to (-)-β-pinene, both (+)-sabinene (20) and (+)-aromadendrene (23) gave two diastereomeric ozonides upon ozonolysis in pentane. The ozonides of sabinene, denoted 21a and 21b were obtained in a combined yield of 95% and in a ratio of 1:1. The ozonides of aromadendrene, denoted 24a and 24b, were obtained in a combined yield of 99% and in a ratio of 1.5:1. All of the isomers have been individually isolated and structurally assigned based on correct elemental analyses, on their ¹H, ¹³C and ¹⁷O NMR spectra and on their reduction to give 22 and 25, respectively. Their stereochemical identity has not been elucidated.

Ozonolysis reactions of camphene (26) have thus far failed to afford the corresponding ozonide 27.1,29 However, from the anomalous products obtained like 291 and 3029, it was inferred that such reactions "undoubtedly involve the highly unstable ozonide 271". In the present work, ozonolysis of camphene in pentane at -40 °C afforded indeed an ozonide of structure 27, as evidenced by low temperature 1H and 13C NMR analysis of the crude reaction product. Attempts to isolate 27 failed, however, since it decomposed at temperatures above -20 °C to give 28 and 29 in a ratio of ca. 1:7, along with minor amounts of 30. Reduction of the crude ozonide 27 with TPP also produced 28 and 29, but in a different ratio of ca. 1:1.4, again along with minor amounts of 30. This indicates that the decomposition reaction of 27 to give 29 competes with the reduction of 27 which yields 28.

EXPERIMENTAL

All reagents used were of commercial grade. NMR spectra were recorded on a Bruker AC 250 instrument. Unless mentioned otherwise, ¹H and ¹³C NMR spectra were obtained in CDCl₃ with TMS as internal reference, and ¹⁷O NMR spectra were recorded by a published procedure³⁰ in C₆D₆ with H₂O as external reference. Assignments of C atoms in the ¹³C NMR spectra are based on the results of CW and DEPT spectra. GC analyses were carried out on a Hewlett Packard 5890 instrument using the following conditions: 50 m capillary column HP Ultra 2, 50 - 180 °C at 7 °C/min. GC/MS: Hewlett Packard system 5985 B and the same GC conditions as above. HPLC separations were carried out on a Merck-Hitachi chromatograph 655 A-11 using the following conditions: column 32 x 250 mm, LiChrosorb Si 60 from Knauer.

Ozonolyses of (+)-limonene (1) and of limonene epoxide (7).

Ozonolysis of 1 in pentane with one molar equivalent of ozone: A solution of 545 mg (4.0 mmol) of 1 in 200 mL of pentane was treated with 4.1 mmol of ozone at -45 °C. The mixture was warmed up to room temperature, the peroxidic precipitate (340 mg) was removed by decantation and from the remaining solution the solvent was removed by vacuum distillation at room temperature to leave 340 mg of a peroxidic liquid residue. Its separation by flash chromatography [column 1.4 x 30 cm; pentane/ether, 95:5 (250 mL), 80:20 (100 mL), ether (200 mL)] gave 58 mg (6.2%) of a 1:1 mixture of 3a and 3b, 56 mg (6.5%) of 4 and 100 mg of a 3:7 mixture of 1 and 2. From the latter mixture, 53 mg (7.2%) of 2 was obtained by flash chromatography [column 0.5 x 30 cm; cyclohexane (200 mL), cyclohexane/ether, 80:20 (100 mL).

Ozonolysis of 1 in pentane with two molar equivalents of ozone: A solution of 5.0 g (36.7 mmol) of 1 in 500 mL of pentane was treated with ozone at -45 °C until the solution turned blue. Residual ozone was flushed off with nitrogen and the mixture was worked up as described above to leave 1.55 g (18.2%) of a peroxidic liquid, which consisted of a mixture of 3a and 3b. Separation of a sample of this mixture by the HPLC method (column 4 x 124 mm; Supersphere Si 60; pentane/ether, 92:8) afforded the individual isomers 3a and 3b.

Ozonolysis of 1 on polyethylene: With the procedure described for the ozonolysis of non-volatile olefins³¹, 1.5 g (11.0 mmol) of 1 on 40 g of polyethylene were treated with ozone for 2.5 h at -45 °C. Residual ozone was flushed off with nitrogen, the loaded polyethylene was warmed up to room temperature and extracted with ether. From the extract ether was distilled off at room temperature and reduced pressure to leave 1.84 g of a peroxidic liquid residue, from which 243 mg (9.5%) of a mixture of

3a and 3b was isolated by flash chromatography [column 2.0 x 75 cm; pentane/ether, 95:5 (800 mL), 80:20 (200 mL), ether (400 mL)].

Ozonolysis of 1 in the presence of formaldehyde: A solution of 2.50 g (18.4 mmol) of 1 and 7.50 g (188 mmol) of formaldehyde in 30 mL of dichloromethane was treated with 17.5 mmol of ozone at -75 °C. The solution was flushed with nitrogen while it was warmed up to room temperature. The solvent was distilled off at reduced pressure and room temperature to leave 4.47 g of a peroxidic liquid residue, from which 1.89 g (48%) of 4 was isolated by flash chromatography (column 3.5 x 45 cm; pentane/ether, 75:25).

Ozonolysis of 1 on silica gel: A suspension of 40 g of dried silica gel in 120 mL of pentane was admixed with 1.0 g (7.4 mmol) of 1 and stirred for 30 min. Then, the solvent was distilled off in a rotary evaporator at reduced pressure. The loaded silica gel was treated with ozone for 2 h at -38 °C. Residual ozone was flushed off with nitrogen, the loaded silica gel was warmed up to room temperature and extracted with ether. From the extract ether was distilled off at room temperature and reduced pressure to leave 323 mg of a peroxidic liquid residue. Its separation by flash chromatography [column 1.4 x 30 cm; pentane/ether, 95:5 (240 mL), 80:20 (200 mL), 50:50 (200 mL), ether (200 mL)] gave 36 mg (2.5%) of a mixture of **5a** - **5d** and 57 mg (5.0%) of **6**.

Ozonolysis of cis-7 in pentane: A solution of 670 mg (4.4 mmol) of cis-7²⁶ in 200 mL of pentane was treated with ozone at -45 °C for 30 min. Residual ozone was flushed off with nitrogen while the mixture was warmed up to room temperature. The solvent was distilled off at room temperature and reduced pressure to leave 862 mg (98%) of a 3:2 mixture of 5a and 5b. From a sample of this mixture 5a and enriched 5b (80%) were obtained by HPLC separation (column 32 x 250 mm, LiChrosorb Si 60; pentane/ether, 90:10).

Ozonolysis of trans-7 in pentane: A solution of 800 mg (5.3 mmol) of trans-7²⁶ in 220 mL of pentane was treated with ozone and worked up as described above to give 1040 mg (95%) of 1:1 mixture of 5c and 5d. From a sample of this mixture 5c and 5d were isolated with the HPLC procedure described above.

1-Methyl-4-isopropenyl-7,8,9-trioxabicyclo[4.2.1]nonane (2): colorless liquid; ¹H NMR δ 1.50 (s, 3H), 1.65 - 1.87 (m), 1.70 (d, J = 0.6 Hz, 3H), 1.98 - 2.18 (m), 2.54 (t,d, J = 11.3 and 5.3 Hz, 1H), 4.67 (t, J = 1.5 Hz, 1H), 4.72 (broad s, 1H), 5.63 (d, J = 4.1 Hz, 1H); ¹³C NMR δ 19.83 (CH₃), 22.15 (CH₃), 28.95 (CH₂), 37.59 (CH₂), 38.97 (CH₂), 42.05 (CH), 103.52 (O-CH-O-O), 109.55 (=CH₂), 109.92 (O-C(CH₃)-O-O), 149.49 (>C=); ¹⁷O NMR δ 115 (-O-), 290 (O-O); MS m/z (%) 185 (2) [M+1]⁺. Anal. calcd for C₁₀H₁₆O₃: C, 65.19; H, 8.75. Found: C, 65.19; H, 8.65.

1-Methyl-4-(3-methyl-1,2,4-trioxolan-3-yl)-7,8,9-trioxabícyclo[4.2.1]nonane (3): Mixture of 3a and 3b: colorless liquid. Anal. cald for $C_{10}H_{16}O_6$: C, 51.72; H, 6.94. Found: C, 51.67; H, 6.99. Isomer 3a:

colorless liquid; ¹H NMR δ 1.37 (s, 3H), 1.50 (s, 3H), 1.56 - 2.25 (m), 5.09 (s, 1H), 5.13 (s, 1H), 5.65 (d, J = 3.9 Hz, 1H); ¹³C NMR δ 18.89 (CH₃), 21.96 (CH₃), 24.43 (CH₂), 33.65 (CH₂), 38.71 (CH₂), 41.61 (CH), 94.02 (O-CH₂-O-O), 103.10 (O-CH-OO), 109.85 (O-C(CH₃)-O-O), 111.24 (O-C(CH₃)-O-O). Isomer **3b**: colorless liquid; ¹H NMR δ 1.38, 1.49, 1.58 - 2.32, 5.09, 5.13, 5.67; ¹³C NMR δ 18.44, 21.95, 24.89, 33.83, 38.68, 41.68, 94.09, 103.16, 109.87, 111.35.

3-Methyl-3-(3-methylethenyl-5-oxopentyl)-1,2,4-trioxolane (4): colorless liquid; ${}^{1}H$ NMR δ 1.40 - 1.75 (m), 1.42 (s, 3H), 1.66 (s, 3H), 2.36 - 2.55 (m, 2H), 2.61 - 2.72 (m, 1H), 4.79 (s, broad, 1H), 4.84 (s, broad, 1H), 5.06 (s, 1H), 5.12 (s, 1H), 9.68 (t, J = 2.3 Hz, 1H); ${}^{13}C$ NMR δ 18.70, 22.67, 27.01, 34.81, 41.39, 47.56, 94.06, 109.56, 113.01, 145.33, 201.64; ${}^{17}O$ NMR δ 99 (-O-), 305 (d, O-O), 598 (C=O). Anal. calcd for $C_{11}H_{18}O_4$: C, 61.66; H, 8.47. Found: C, 61.56; H, 8.47.

1-Methyl-4-(3-methyl-1,2,4-trioxolan-3-yl)-7-oxabicyclo[4.1.0]heptanes (5a - 5d): colorless liquids. Isomer 5a: ¹H NMR δ 1.05 - 1.26 (m, 1H), 1.32 (s, 3H), 1.37 (s, 3H), 1.61 - 1.72 (m, 2H), 1.84 - 1.97 (m, 3H), 2.18 - 2.27 (dm, 1H), 3.06 (t, J = 2.0 Hz, 1H), 5.00 (s, 1H), 5.15 (s, 1H); 13 C NMR δ 20.78 (CH₃), 22.22 (CH₂), 24.25 (CH₃), 26.94 (CH₂), 28.67 (CH₂), 36.70 (CH₃), 57.26 ((CH₃)C-O), 60.30 (CH), 93.98 (O-CH₂-OO), 111.10 (O-C(CH₃)-O-O); MS m/z (%) 201 (100) [M+1]⁺. Anal. calcd for C₁₀H₁₆O₄: C, 59.98; H, 8.05. Found: C, 60.01; H, 8.03. Isomer **5b** (in admixture with 20% of **5a**): ¹H NMR δ 1.08 - 1.22 (m), 1.31 (s), 1.36 (s), 1.56 - 1.67 (m), 1.83 - 1.96 (m), 2.22 - 2.30 (dm), 3.06 (t), 5.03 (s), 5.14 (s). Isomer 5c: 1 H NMR δ 1.32 (s, 3H), 1.34 (s, 3H), 1.51 - 1.77 (m, 5H), 2.01 - 2.14 (m, 2H), 2.99 (d, J = 5.4 Hz, 1H), 5.03 (s, 1H), 5.12 (s, 1H); 13 C NMR δ 19.37 (CH₃), 20.19 (CH₂), 22.89 (CH₃), 25.71 (CH₂), 30.34 (CH₂), 40.41, (CH), 57.50 ((CH₃)C-O), 58.49 (CH), 93.98 (O-CH₂-OO), 111.04 (O-C(CH₃)-OO); ¹⁷O NMR δ 35 (epoxy-O), 97 (-O-), 291 (d, O-O); MS m/z (%) 201 (100) [M+1]*. Anal. calcd for C₁₀H₁₆O₄: C, 59.98; H, 8.05. Found: C, 59.82; H, 8.00. Isomer **5d**: ¹H NMR δ 1.32 (s, 3H), 1.35 (s, 3H), 1.42 - 1.52 (m, 1H), 1.55 - 1.77 (m, 4H), 1.99 - 2.21 (m, 2H), 3.01 (d, J = 5.4Hz, 1H), 5.07 (s, 1H), 5.11 (s, 1H); 13 C NMR δ 19.25, 20.65, 22.90, 25.70, 30.37, 40.45, 57.50, 58.59, 94.07, 111.13; ¹⁷O NMR δ 33, 95, 297 (d); MS m/z (%) 201 (100) [M+1]⁺. Anal. calcd for $C_{10}H_{16}O_4$: C, 59.98; H, 8.05. Found: C, 59.96; H, 8.06.

Reductions of ozonides 2 - 5.

A solution of ca. 0.25 mmol of an ozonide in ca. 1 mL of CDCl₃ was admixed with an excess of triphenylphosphine at room temperature. ¹H NMR analyses after several days showed that 2 and 4 were converted into 8, 5a and 5b were converted into cis-6, 5c and 5d were converted into trans-6 and 3 was converted into a mixture of 9 and 10 in a ratio of 12:88. From the latter mixture, 10 was isolated in a yield of 83% by flash chromatography [column 0.5 x 30 cm; pentane/ether, 95:5 (160 mL), 80:20 (100

mL), 70:30 (100 mL)]. Reduction of 10 with one molar equivalent of triphenylphosphine gave 9 as the sole product.

cis- and trans-4-Acetyl-1-methyl-7-oxabicyclo[4.1.0]heptane (cis-6 and trans-6) were assigned based on the identity of their ¹H and ¹³C NMR data with those reported. ³²

3-Isopropenyl-1,6-dioxo-heptane (8): colorless liquid; 1 H NMR δ 1.57 - 1.77 (m), 1.64 (d, J = 0.8 Hz), 2.14 (s, 3H), 2.40 - 2.51 (m, 4H), 2.63 - 2.75 (m, 1H), 4.77 (m, 1H), 4.83 (m, 1H), 9.67 (t, J = 2.3 Hz, 1H); 13 C NMR δ 18.45, 26.51, 29.88, 40.78, 47.40, 113.08, 145.15, 201.51, 207.99. These data were identical with those of an authentic sample. 33

3-Acetyl-1,6-dioxo-heptane (9): colorless liquid; ¹H NMR δ 1.64 - 1.81 (m), 1.86 - 2.00 (m), 2.14 (s, 3H), 2.26 (s, 3H), 2.40 - 2.51 (m), 2.89 - 3.12 (m), 9.72 (1H).

4-Acetyl-1-methyl-7,8,9-trioxabicyclo[4.2.1]nonane (10): colorless liquid; ¹H NMR δ 1.50 (s, 3H), 1.69 - 2.28 (m), 2.18 (s, 3H), 2.80 - 2.90 (m, 1H), 5.67 (d, J = 3.9 Hz, 1H); ¹³C NMR δ 22.27 (CH₃), 25.05 (CH₂), 27.84 (CH₃), 34.14 (CH₂), 37.95 (CH₂), 48.19 (CH), 102.93 (O-CH-OO), 109.90 (O-C(CH₃)-OO), 209.26 (C=O); ¹⁷O NMR δ 112 (-O-), 299 (O-O), 563 (C=O). Anal calcd for C₉H₁₄O₄: C, 58.05; H, 7.58. Found: C, 58.39; H, 7.60.

Ozonolyses of (-)-α-pinene (12)

Ozonolysis of 12 in pentane: A solution of 1.00 g (7.34 mmol) of 12 in 600 ml of pentane was treated with 7.35 mmol of ozone at -35 °C. The mixture was warmed up to room temperature, the peroxidic precipitate (1.1 g) was removed by decantation. From the separated solution, the solvent was removed by vacuum distillation room temperature to leave 330 mg of a non-peroxidic liquid residue. GC analysis showed the presence of 13 ($t_R = 14.7 \text{ min}$), 14a ($t_R = 18.7 \text{ min}$) and 14b ($t_R = 22.9 \text{ min}$) in molar proportions of ca. 1:1:1, as evidenced by coinjection with authentic samples. The peroxidic precipitate was dissolved in trichloro methane, admixed with 1.9 g of TPP at 0 °C and kept at room temperature for 24 h. The solvent was distilled off at reduced pressure and room temperature and the residue was separated by flash chromatography (column 2 x 75 cm; pentane/ether, 60:40) to give 330 mg of a mixture of 14a and 14b. Renewed separation (column 1.4 x 30 cm; pentane/ether, 97:3) gave 224 mg (18%) of 14a and 14 mg (1%) of 14b. They were assigned based on the identity of their ¹H NMR data with those published for 14a³⁴ and 14b.

Ozonolysis of 12 on polyethylene: With the procedure described for the ozonolysis of volatile olefins, ³¹ 2.7 g (19.8 mmol) of 12 on 70 g of polyethylene were treated with 59 mmol of ozone at -78 °C. Residual ozone was flushed off with nitrogen, the loaded polyethylene was warmed up to room temperature and extracted with ether. From the extract ether was distilled off at room temperature and

reduced pressure to leave 2.62 g of a non-peroxidic liquid residue. GC analysis showed the presence of 12 ($t_R = 10.8 \text{ min}$), 13, 14a and 14b in a molar ratio of 21:1:2:2.

Ozonolyses of (-)-β-pinene (15)

Ozonolysis of 15 in pentane: A solution of 1.2 g (8.8 mmol) of 15 in 500 mL of pentane was treated with 8.8 mmol of ozone at -40 °C. The solution was warmed up to room temperature and the solvent was distilled off at reduced pressure to leave 1.55 g of a colorless liquid from which 1.35 g (83%) of 16a was isolated by flash chromatography (column 1.8×75 cm; pentane/ether, 3:1).

Ozonolysis of 15 on polyethylene: With the procedure described for the ozonolysis of non-volatile olefins, ³¹ 2.1 g (15.4 mmol) of 15 on 70 g of polyethylene were treated with 41 mmol of ozone at -45 °C. Residual ozone was flushed off with nitrogen, the loaded polyethylene was warmed up to room temperature and extracted with ether. From the extract, ether was distilled off at room temperature to leave 2.34 g of a liquid residue. Flash chromatography (column 3.5 x 45 cm; pentane/ether, 98:2) afforded 1.98 g (70%) of a 3.2:1 mixture of 16a and 16b. HPLC separation (pentane/ether, 96:4) gave 1324 mg (47%) of 16a and 352 mg (12%) of 16b.

β-Pinene ozonides (16)

Isomer 16a: colorless liquid; ¹H NMR and [Lit. data] δ 0.93 [0.93^{28a,b}, 0.91²⁹] (s, 3H), 1.23 [1.23^{28a,b,29}] (s, 3H), 1.42 [1.42^{28a}, 1.58^{28b}] (d, J = 10.5 Hz, 1H), 1.83 - 2.40 [1.64 - 2.38^{28a}, 1.85 - 2.35^{28b}] (m, 7H), 5.00 [4.99, ^{28a,b} 4.91²⁹] (s, 1H), 5.07 [5.07^{28a,b,29}] (s, 1H); ¹³C NMR and [Lit. data] δ 22.48 [22.40^{28a,b}] (CH₂), 22.80 [22.77^{28a}, 22.8^{28b}] (CH₃), 26.25 [26.16^{28a}, 26.2^{28b}] (CH₂), 26.48 [26.40^{28a}, 26.4^{28b}] (CH₂), 27.79 [27.73^{28a}, 27.7^{28b}] (CH₂), 38.21 (C(CH₃)₂), 40.17 [40.02^{28a}, 40.0^{28b}] (CH), 49.25 [49.10^{28a}, 49.1^{28b}] (CH), 92.90 [92.86^{28a}, 92.9^{28b}] (CH₂-OO), 113.84 (C-OO); ¹⁷O NMR δ 108 (-O-), 271 and 318 (-O-O-). Anal. calcd for C₁₀H₁₆O₃: C, 65.18; H, 8.76. Found: C, 64.98; H, 8.62.

Isomer 16b: colorless liquid; ¹H NMR δ 0.94 (s, 3H), 1.06 (s, 3H), 1.43 (d, J = 9.5 Hz, 1H), 1.52 - 1.73 (m, 3H), 1.99 - 2.29 (m, 4H), 4.63 (s, 1H), 4.71 (s, 1H); ¹³C NMR δ 22.73 (CH₂), 22.97 (CH₃), 26.53 (CH₂), 26.58 (CH₃), 28.11 (CH₂), 38.33 (C(CH₃)₂), 40.49 (CH), 49.70 (CH), 92.99 (CH₂-OO), 113.75 (C-OO); ¹⁷O NMR δ 114 (-O-), 280 and 312 (-O-O-). Anal. calcd for C₁₀H₁₆O₃; C, 65.18; H, 8.76. Found: C, 64.19; H, 8.71.

Reductions of ozonides 16a and 16b: Solutions of ca. 82 mg (0.44 mmol) of **16a** or **16b** in 2 mL of CDCl₃ were admixed with 145 mg (0.55 mmol) of triphenylphosphine at room temperature. ¹H NMR and GC analysis with the help of an authentic sample showed that **16a** and **16b** were converted into **18** [δ 0.85 (s, 3H), 1.31 (s, 3H), 1.56 (d, J = 9.8 Hz, 1H), 1.89 - 2.64 (m, 7H); $t_R = 15.5$ min].

Thermal decomposition of 16a and 16b: Solutions of 27 mg (0.14 mmol) of 16a or 16b and 26 mg (0.15 mmol) of 1,1,2,2-tetrachloroethane (as internal standard) in 1 mL of C_6D_6 were heated to 40 °C. ¹H NMR analysis showed that after 17 h ca. 80% and after 43 h 100% of the ozonides were decomposed to give an equimolar mixture of 18 [δ 0.57 (s, 3H), 0.93 (s, 3H), 1.04 (d, J = 10.0 Hz, 1H), 1.41 - 1.48 (m), 1.67 - 1.71 (m), 1.96 - 2.27 (m)] and of formic acid [δ 7.50 (s)].

Ozonolysis of 15 in acetone: A solution of 680 mg (5 mmol) of 15 in 100 mL of acetone was treated with 5 mmol of ozone at -40 °C. The solution was warmed up to room temperature and the solvent was distilled off at reduced pressure to leave 902 mg (92%) of a colorless liquid, which was identified as **16a** on the basis of its ¹H and ¹³C NMR data.

Ozonolysis of 15 in acetaldehyde: A solution of 1.36 g (10 mmol) of 15 in 200 mL of freshly distilled acetaldehyde was treated with 10 mmol of ozone at -40°C and the product was worked up as described above to leave 3.13 g of a liquid residue. From this residue, 982 mg of a mixture of 17a, 17b and 16a (molar ratio 3:1.3:1) was isolated by flash chromatography (column 3.6 x 75 cm; pentane/ether, 98:2). A solution of 700 mg of this mixture in ether was admixed with 207 mg (0.79 mmol) of triphenylphosphine and kept at room temperature for 24 h. The solvent was distilled off and from the residue 450 mg (23%) of a 2.3:1 mixture of 17a and 17b was isolated by flash chromatography (column 1.5 x 30 cm, pentane/ether, 98:2).

6,6-Dimethylbicyclo[3.1.1^{1,5}]heptane-<2-spiro-3>-5-methyl-1,2,4-trioxolanes (17)

Isomer 17a (in admixture with 30% of **17b**): ¹H NMR δ 0.92 (s, 3H), 1.22 (s, 3H), 1.35 (d, J = 4.9 Hz, 3H), 5.28 (q, J = 4.9 Hz, 1H); ¹³C NMR δ 16.99, 22.60, 22.70, 26.36, 26.58, 26.77, 38.18, 40.15, 50.10, 100.28, 114.57.

Isomer 17b (in admixture with 70% of **17a**): ¹H NMR δ 0.91 (s, 3H), 1.24 (s, 3H), 1.39 (d, J = 4.9 Hz, 3H), 5.18 (q, J = 4.9 Hz, 1H); ¹³C NMR δ 16.89, 22.44, 23.07, 26.15, 26.51, 30.12, 38.34, 40.26, 49.53, 99.65, 114.49.

Reduction of 17a and 17b: A solution of 15 mg (0.08 mmol) of 17a + 17b in 0.5 mL of C_6D_6 was admixed with 23 mg (0.088 mmol) of triphenylphosphine. ¹H NMR analysis after several days showed the presence of equimolar amounts of 18 [δ 0.61 (s), 0.97 (s), 1.15 (d), 1.45 - 2.51 (m)] and of acetaldehyde [δ 1.43 (d), 9.18 (q)].

Ozonolysis of (+)-sabinene (20): A solution of 900 mg (6.6 mmol) of 20 in 100 mL of pentane was treated with 7.3 mmol of ozone at -45 °C and the product was worked up as described above to give 1.16 g (95%) of a 1:1 mixture of 21a and 21b. HPLC separation of this mixture (pentane/ether, 97:3) afforded 415 mg (34%) of 21a and 455 mg (37%) of 21b.

Sabinene ozonides (21)

Isomer 21a: colorless liquid; ¹H NMR δ 0.56 - 0.61 (m, 1H), 0.89 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 1.25 - 1.30 (m, 1H), 1.47 (sept., J = 6.8 Hz, 1H), 1.59 - 1.90 (m, 5H), 5.07 (s, 1H), 5.24 (s, 1H); ¹³C NMR δ 12.84 (CH₂), 19.41 (CH₃), 19.57 (CH₃), 24.87 (CH₂), 26.79 (CH), 30.48 (CH₂), 32.17 (CH), 34.37 (C), 93.93 (CH₂-OO), 118.25 (C-OO); ¹⁷O NMR δ 104 (-O-), 285 and 305 (-O-O-). Anal. calcd for $C_{10}H_{16}O_3$: C, 65.18; H, 8.76. Found: C, 65.13; H, 8.31.

Isomer 21b: colorless liquid; ¹H NMR δ 0.61 - 0.71 (m, 1H), 0.88 (d, J = 6.8 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 1.19 - 1.24 (m, 1H), 1.43 (sept., J = 6.8 Hz, 1H), 1.56 - 1.87 (m, 5H), 5.07 (s, 1H), 5.15 (s, 1H); ¹³C NMR δ 12.77 (CH₂), 19.40 (CH₃), 19.48 (CH₃), 24.64 (CH₂), 25.01 (CH), 30.93 (CH₂), 31.98 (CH), 33.43 (C), 94.08 (CH₂-OO), 118.39 (C-OO); ¹⁷O NMR δ 93 (-O-), 282 and 312 (-O-O-). Anal. calcd for C₁₀H₁₆O₃: C, 65.18; H, 8.76. Found: C, 65.15; H, 8.55.

Reduction of 21a and 21b: A solution of ca. 20 mg (0.10 mmol) of **21a** or **21b** in 0.6 mL of CDCl₃ was admixed with 30 mg (0.11 mmol) of triphenylphosphine. ¹H NMR analysis showed the presence of polymeric formaldehyde (δ 4.89 and 4.92) and of **22** [δ 0.94 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 1.04 - 1.09 (m, 1H), 1.16 - 1.21 (m, 1H), 1.50 - 1.67 (m, 2H), 1.94 - 2.21 (m, 4H)]. The identity of **22** was proven with the help of an authentic sample.

Ozonolysis of (+)-aromadendrene (23): A solution of 1.50 g (7.34 mmol) of 23 in 500 mL of pentane was treated with 7.4 mmol of ozone at -45 °C and the product was worked up as described above to give 1.84 (99%) of a 3:1 mixture of 24a and 24b. HPLC separation of this mixture (pentane/ether, 98:2) afforded 1.19 g (64%) of 24a and 375 mg (20%) of 24b.

Aromadendrene ozonides (24)

Isomer 24a: colorless solid, mp 43 °C; ¹H NMR δ 0.50 - 0.68 (m, 2H), 0.91 (d, J = 7.1 Hz, 3H), 1.02 (s, 6H), 1.16 - 1.31 (m, 2H), 1.46 - 1.86 (m, 6H), 1.97 - 2.12 (m, 3H), 5.01 (s, 1H), 5.22 (d, J = 0.8 Hz, 1H); ¹³C NMR δ 15.59, 16.37, 18.54, 19.54, 25.20, 26.94, 27.62, 28.71, 34.39, 35.56, 37.64, 40.08, 51.31, 94.84, 112.40; ¹⁷O NMR δ 87 (-O-), 264 and 319 (-O-O-). Anal. calcd for $C_{15}H_{24}O_3$: C, 71.39; H, 9.59. Found: C, 71.74; H, 9.62.

Isomer 24b: colorless solid, mp 30 °C; ¹H NMR δ 0.48 - 0.66 (m, 2H), 0.90 (d, J = 7.1 Hz, 3H), 0.99 (s, 3H), 1.01 (s, 3H), 1.13 - 1.25 (m, 2H), 1.48 - 1.79 (m, 6H), 1.99 - 2.09 (m, 2H), 2.25 - 2.36 (m, 1H), 5.01 (s, 1H), 5.25 (s, 1H); ¹³C NMR δ 15.55, 16.03, 18.92, 19.50, 25.16, 26.50, 27.95, 28.69, 34.30, 35.96, 37.52, 39.33, 52.76, 94.26, 112.16; ¹⁷O NMR δ 110 (-O-), 270 (-O-O-). Anal. calcd for $C_{15}H_{24}O_3$: C, 71.39; H, 9.59. Found: C, 71.57; H, 9.53.

Reduction of 24a and 24b: A solution of 45 mg (0.18 mmol) of 24a or 24b in 0.7 mL of CDCl₃ was admixed with 52 mg (0.20 mmol) of triphenylphosphine. ¹H NMR analysis showed the presence of polymeric formaldehyde (δ 4.89 and 4.92) and of 25. Separation of this mixture by flash chromatography (column 0.5 x 30 cm; pentane/ether, 90:10) gave 35 mg (95%) of 25.

Apoaromadendrone (25): colorless solid, mp 83 °C. Lit.³⁶ mp 82.5 - 83.5 °C; ¹H NMR δ 0.71 - 1.15 (m, 3H), 0.95 (d, J = 7.1 Hz, 3H), 0.97 (s, 3H), 1.08 (s, 3H), 1.29 - 1.48 (m, 2H), 1.56 - 1.65 (m, 1H), 1.74 - 1.83 (m, 1H), 1.99 - 2.14 (m, 3H), 2.40 - 2.51 (m, 2H), 2.74 - 2.84 (m, 1H); ¹³C NMR δ 15.35, 15.91, 15.84, 20.20, 23.61, 26.58, 27.34, 28.67, 34.44, 36.38, 42.54, 44.28, 58.81, 212.48.

Ozonolysis of camphene (26) in pentane: A solution of 100 mg (0.73 mmol) of 26 in 35 mL of pentane was treated with 0.75 mmol of ozone at -40 °C. The solvent was distilled off at reduced pressure at -40 °C, the solid residue was dissolved in 2 mL of cold CDCl₃ and analyzed by NMR spectroscopy at -20 °C.

Camphene ozonide (27) (in admixture with ca. 10% of an unknown impurity): ${}^{1}H$ NMR δ 0.81 - 1.81 (m), 0.96 (s), 1.03 (s), 1.83 - 1.92 (m), 2.21 - 2.26 (m), 5.09 (s), 5.10 (s); ${}^{13}C$ NMR δ 20.77 (CH₃), 21.32 (CH₂), 23.60 (CH₂), 25.62 (CH₃), 34.52 (CH₂), 43.65 (C(CH₃)₂), 45.50 (CH), 47.91 (CH), 93.61 (OCH₂OO), 116.09 (O-C-O-O).

Reduction of 27: A sample of 0.7 mL of the above solution was admixed with 71 mg of triphenylphosphine. GC and GC/MS analyses showed the presence of 35% of **28** (t_R = 14.2 min; m/z 138 (31%) M⁺), 49% of **29** (t_R = 20.4 min; m/z 154 (2%) M⁺) and 9% of **30** (t_R = 14.7 min; m/z 154 (16%)M⁺). These assignments were confirmed by coinjections with authentic samples.

Decomposition of 27: A second sample of 0.7 mL of the solution of 27 in CDCl₃ was kept at room temperature for 24 h. GC analysis showed the presence of 5% of 28, 34% of 29 and 1% of 30, along with nine additional products of unknown identity.

REFERENCES

- Bailey, P.S. in Ozonation in Organic Chemistry, Academic Press, New York, 1978, Vol. I, 170 -173.
- 2. Grosjean, D. Atmospheric Chemistry of Biogenic Hydrocarbons, Amer. Chem. Soc. Preprints of Papers, 1994, Vol. 34, No. 1, 691 731.
- 3. Hakola, H.; Arey, J.; Aschmann, S.M.; Atkinson, R. J. Atmos. Chem. 1994, 18, 75 102.
- Atkinson, R.; Aschmann, S.M.; Arey, J.; Shorees, B. J. Geophys. Res. [Atmos.], 1992, 97 (D5), 6065 - 6073.
- 5. Atkinson, R.; Aschmann, S.M.; Arey, J. Atmos. Environ., Part A, 1990, 24A, 2647 2654.
- 6. Jay, K.; Stieglitz, L. Atmos. Environ. 1989, 23, 1219 1221.

- 7. Zhang, J.; Wilson, W.E.; Lioy, P.J. Environ. Sci. Technol. 1994, 28, 1975 1982.
- 8. Grosjean, D.; Williams, E.L.; Grosjean, E.; Andino, J.M.; Seinfeld, J.H. Environ. Sci. Technol. 1993, 27, 2754 2758.
- 9. Bechara, J., Becker, K.H., Brockmann, K.J. Pollut. Atmos. 1991, 21 28.
- 10. Hewitt, C.N.; Kok, G.L. J. Atmos. Chem. 1991, 12, 181 194.
- 11. Simonaitis, R.; Olszyna, K.J.; Meagher, J.F. Geophys. Res. Lett. 1991, 18, 9 12.
- 12. Kotzias, D.; Fytianos, K.; Geiss, F. Atmos. Environ., Part A, 1990, 24A, 2127 2132.
- 13. Atkinson, R.; Hasegawa, D.; Aschmann, S.M. Int. J. Chem. Kinet. 1990, 22, 871 887.
- 14. Yokouchi, Y.; Ambe, Y. Atmos. Environ. 1985, 19, 1271 1276.
- 15. Arora, P.K.; Chatha, J.P.S.; Vohra, K.G. Chem. Phys. Lett. 1983, 100, 93 98.
- 16. Arora, P.K.; Vohra, K.G. Chem. Phys. Lett. 1983, 96, 161 166.
- 17. Gaeb, S.; Turner, W.K.; Wolff, S.; Becker, K.H.; Ruppert, L.; Brockmann, K.J. *Atmos. Environ.* 1995, 29, 2401 2407.
- 18. Hatakeyama, S.; Izumi, K.; Fukuyama, T.; Akimoto, H. J. Geophys. Res., D, Atmos. 1989, 94, 13013 13024.
- 19. Hooker, C.L.; Westberg, H.H.; Sheppard, J.C. J. Atmos. Chem. 1985, 2, 307 320.
- 20. Atkinson, R.; Winer, A.M.; Pitts, J.N. Atmos. Environ. 1982, 16, 1017 1020.
- 21a. Niki, H.; Maker, P.D.; Savage, C.M.; Breitenbach, L.P. Chem. Phys. Lett. 1977, 46, 327 330.
- 21b. Fajgar, R., Vitek, J., Haas, Y., Pola, J. Tetrah. Lett. 1996, 37, 3391 3394.
- 22. O'Neal, H.E.; Blumstein, C. Internat. J. Chem. Kin. 1973, Vol. V, 397 413.
- 23. Martinez, R.I.; Herron, J.T.; Huie, R.E. J. Am. Chem. Soc. 1981, 103, 3807 3820.
- 24. Niki, H.; Maker, P.D.; Savage, C.M.; Breitenbach, L.P.; Hurley, M.D. J. Phys. Chem. 1987, 91, 941 946.
- 25. Kula, J.; Podlejski, J. Liebigs Ann. Chem. 1985, 2098 2100.
- 26. Knöll, W.; Tamm, C. Helv. Chim. Acta 1975, 58 1162 1171.
- 27. Criegee, R.; Blust, G.; Lohaus, G. Liebigs Ann. Chem. 1953, 583, 2 10.
- 28. Hon, Y.S.; Lin, S.W.; Lu, L.; Chen, Y.J. a) Synthet. Commun. 1993, 23, 1543 1553. b) Tetrahedron 1995, 51, 5019 5034.
- 29. Tanaka, J.; Tabake, K.; Kawakita, M.; Ito, M.; Katagiri, T. J. Chem. Soc. Japan. 1978 (2) 284 287.
- 30. Hock, F.; Ball, V.; Dong, Y.; Gutsche, S.-H.; Hilß, M.; Schlindwein, K.; Griesbaum, K.. *J. Magn. Reson.* **1994**, A 111, 150 154.
- 31. Griesbaum, K.; Volpp, W.; Huh, T.S.; Jung, I.Ch. Chem. Ber. 1989, 122, 941 944.
- 32. Delay, F.; Ohloff, G. Helv. Chim. Acta 1979, 62, 2168 2173.
- 33. Wolinsky, J.; Barker, W. J. Am. Chem. Soc. 1960, 82, 636 638.
- 34. Quon, H.H.; Chow, Y.L. Tetrahedron 1975, 31, 2349 2354.
- 35. Subramanian, L.R.; Krishna Rao, G.S. Tetrahedron 1969, 25, 1749 1756.
- 36. Büchi, G.; Hofheinz, W.; Paukstelis, J.V. J. Am. Chem. Soc. 1969, 91, 6473 6478.